

DC switch disconnectors up to 1500 Vdc

Instruction manual

88	UL File No.	Standard				
	E493630	UL 489B	Switches, Molded Case, for Use in Photovoltaic Systems			
	E491572	UL 489F	Switches, Molded Case, for Use with Battery Power Supplies			

Instruction manual

A. Safety precaution	on				A-1 ~ A-3
1. Safety precaution	n 2. Cau	ution 3	. Danger	4. Warnir	ng
B. Service conditio	n				B-1 ~ B-3
1. Normal/Special	service condition	2.	Altitude and er	nclosure info	rmation
C. Structure and o	peration				C-1 ~ C-3
1. Internal structure	and components	2.	Basic function	and breaking	g operation
D. Ratings and typ	es ·····				D-1 ~ D-3
1. Ratings 2	. Type of UDA sei	ies (Main Fran	ne/Cradle/Acco	essories)	
E. Weight & Specif	fication of comm	on busbar			E-1
1. Weight 2	. Specification of o	common busba	r		
F. Unpacking					F-1 ~ F-2
1. Receiving	2. Unpa	cking	3. Check po	int and cauti	on
G. Handling and st	orage				G-1 ~ G-2
1. Handling	2. Stora	ge			
H. Installation					H-1 ~ H-5
 Installation of fixe Installation preca Busbar connection 	aution	 Installation of Installation of Caution of b 	of insulation ba	arrier	
I. Operation					I-1 ~ I-4
 Manual operation Draw-out operation 		ctrical operatio	on 3.	Draw-in ope	ration
J. Inspection and tr	oubleshooting ··				J-1 ~ J-4
 Inspection and m Inspection method Defects and troub 	od of arc chamber	4. Ins	arantee life cy pection metho		ntact
K. Wiring diagram	of control circuit				K -1
L. Other operation					L -1

A. Safety precaution

1. Safety precaution

Outline for safety operation

This manual does not cover all possible contingencies, variations and details that may arise during installation, operation or maintenance of this equipment. If the user has questions regarding a particular installation, contact the local LSIS sales office. For application information, consult your nearest LSIS sales office.

The information contained herein is general in nature and not intended for specific application purposes. It does not relieve the user of responsibility to use sound practices in application, installation, operation, and maintenance of the equipment purchased. LSIS's reserves the right to make changes in the specifications shown herein or to make improvements at any time without notice or obligations. If a conflict arise between the general information contained in this publication and the contents of drawings or supplementary material or both, the latter shall take precedence

Qualified person

For the purpose of this manual and product labels, a qualified person with suitable knowledge of installation, construction, operation, or maintenance of the equipment and the hazards involved. In addition, this person has the following qualifications:

- (a) is trained and authorized to energize, de-energize, clear, ground, and connect circuits and equipment in accordance with established safety practices.
- (b) is trained in the proper care and use of protective equipment such as rubber gloves, hard hat, safety glasses or face shields, flash clothing, etc., in accordance with safety practices.

(c) is trained in rendering first aid.

These instructions do not cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation, or maintenance. In case particular problems arise which are not covered sufficiently for the purchaser's purposes further information should be desired or the matter should be referred to the local LSIS's sales office. The contents of this instruction manual shall not become part of or modify any prior or existing agreement, commitment or relationship.

Danger, Warning, Caution

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, or maintain it.. The following special messages may appear throughout this manual to warn of potential hazard and to call attention to additional information which clarifies or simplifies a procedure.

Safety precaution is classified by danger, warning, caution and the meaning is as follows.

Danger	Not following the instruction may result in serious injury and even death
🕂 Warning	Not following the instruction may result in serious injury and even death
A Caution	Not following the instruction may result in minor or moderate injury, or property damage

Dangerous procedures

In addition to other procedures described in this manual as dangerous, user personnel must adhere to the following:

- 1. Always work only on de-energized equipment. Always de-energize a contactor, and remove it from the equipment before performing any tests, maintenance or repair.
- 2. Always let an interlock device or safety mechanism perform its function without forcing or defeating the device.

A. Safety precaution

2. Caution

Caution

- 1. Be sure to tighten the terminal screws to the torque specified in the instruction manual.
- 2. Do not install in areas subject to high temperature, high humidity, dust, corrosive gas, vibrations, and shocks. To do so may result in malfunction or fire.
- 3. To get ACB tripped automatically, always clear the source of the malfunction before closing the ACB again. Failure to do so may result in fire.
- 4. Terminal screws should be checked and tightened periodically. Failure to do so may result in fire.
- 5. Use the ACB in DC only. Fatal failure to do so may result in malfunction or fire.

3. Danger

- HAZARD OF BODILY INJURY OR EQUIPMENT DAMAGE
- 1. Only qualified electrical workers with training and experience on high voltage circuits should perform work described in this set of instructions. These workers must understand the hazards involved in working with or near high voltage equipment. Such work should be performed only after reading this complete set of instructions.
- 2. The successful operation of Susol ACBs depends upon proper handling, installation, operation, and maintenance. Neglecting fundamental installation and maintenance requirements may lead to personal injury as well as damage to electrical equipment or other property.
- 3. Susol ACBs have features designed to prevent unsafe operation, but it is not possible to eliminate every hazard with these features. Therefore, the person using this device is responsible for recognizing the potential hazards, for wearing protective safety equipment, and for taking adequate safety precautions.
- 4. Do not make any adjustment to the equipment or operate the system with safety features removed. Contact your local LSIS representative for additional instructions if the Susol ACB does not function as described in this manual.
- 5. Before performing visual inspections, tests, or maintenance on this device, disconnect all sources of electric power. Assume that all circuits are live until they have been completely de-energized, tested, grounded, and connected. Pay particular attention to the design of the power system. Consider all sources of power, including the possibility of back feeding.
- 6. Before replacing covers or closing doors, carefully inspect the bus work area for tools and objects left inside the equipment. Use care while removing or installing panels so that they do not extend into energized bus.
- 7. Before making any electrical connection, take every precaution to see that all connections are deenergized and grounded.
- 8. Introducing foreign objects into this equipment can cause a short circuit which can result in severe damage, personal injury, or death. Short circuits can release large amounts of energy due to a rapid expansion of super-heated, ionized gases. Products of this instantaneous expansion can quickly engulf and burn personnel before preventive action can be taken. The short circuit source can cause additional injuries by propelling personnel or objects several feet from the equipment. Some foreign objects that can cause short circuits are tools, test leads and instruments not designed for high voltage circuits, wire, and other conducting or semi conducting materials. Workers must also be careful to keep clothing and body parts out of the equipment. Failure to observe these precautions could result in severe personal injury, death, or equipment

A. Safety precaution

4. Warning

Receiving

A visual inspection – inside and out – should be performed immediately upon receipt of the ACB and before removing it from the truck. Shipping papers should be checked to ensure all boxes or other accompanying pieces have been received. If any damage or shortages are evident, a claim should be filed at once with the carrier, and the nearest LSIS sales office. Claims for shortages or other errors must be made in writing to LSIS within 30days after receipt of ACB. Failure to do so constitutes unqualified acceptance and a waiver of all such claims by the purchaser.

Handling

Removable lifting plates are provided on the top of the Susol ACB structure for insertion of hooks to lift the complete structure. This is the only recommended method of moving the Susol ACB structure. Extreme care should be used not to damage or deform the unit if other moving methods are employed.

Storage

If it is necessary to store the equipment before installation, keep it in a clean, dry location with ample air circulation and heat to prevent condensation. Like all electrical apparatus, these units contain insulation that must be protected against dirt and moisture. Outdoor units may be stored outside only if roof caps are installed, space heaters energized and any openings are enclosed.

Lifting Instructions

- 1. Do not pass cables or ropes through support holes.
- 2. Always use load rated shackles or safety hooks in support holes.
- 3. Rig so that legs of sling are no less than 45 degrees from horizontal.

Moving

A crane or hoist can also be used to handle the breaker, if the lifting device is not available. If a forklift is utilized, the following precautions should be taken when moving circuit breakers:

- 1. Keep the breaker in an upright position only.
- 2. Make sure the load is properly balanced on the forks.
- 3. Place protective material between the breaker and the forklift to prevent bending or scratching.
- 4. Securely strap the breaker to the forklift to prevent shifting or tipping.
- 5. Excessive speeds and sudden starts, stops, and turns must be avoided when handling the breaker.
- 6. Lift the breaker only high enough to clear obstructions on the floor.
- 7. Take care to avoid collisions with structures, other equipment, or personnel when moving the breaker.
- 8. Never lift a breaker above an area where personnel is.

B. Service condition

1. Normal/Special service condition

Normal service conditions

If under ordinary conditions the following normal working conditions are all satisfied, Susol ACB should be used under this condition unless otherwise specified.

- 1) Ambient temperature A range of max. +40 ℃ to min. -5 ℃ is recommended. However, the average temperature of 24 hours does not exceed +35 ℃.
- 2) Altitude
- 2,000m or less.
- 3) Environmental conditions

The air must be clean, and the relative humidity does not exceed 85% at a max. of $+40^{\circ}$ C and 90% at 20°C. Do not use and store in presence of corrosive or ammonia gas. (H2S ≤ 0.01 ppm, SO2 ≤ 0.01 ppm, NH3 $\leq a$ few ppm)

- 4) Installation conditions
 When installing Susol ACB, refer to catalogue or the installation instructions in the instruction manual.
 5) Storage temperature
- A range of max. +60 \degree to min. -20 \degree is recommended.
- 6) Replacement

Approx. 15 years (depends on number of breaking of over current or service condition). Please see maintenance and inspection for further detail.

2. Special service conditions

In the case of special service condition, modified air circuit breakers are available. Please specify when ordering. Service life may be shorter, it depends on service conditions.

1) Special environmental conditions

If it is used at high temperature and/or high humidity, the insulation durability and other electrical or mechanical features may deteriorate. Therefore, the breaker should be specially treated. Moisture fungus treatment with increased corrosion-resistance is recommended. When using products under this condition, please contact LS service team or nearest sales representatives.

2) Special ambient temperature If the ambient temperature exceeds +40 °C, reduce the continuous conducting current for a use referring to Table. A.

3) Special altitude

If it is used at the 2,000m or higher the heat radiation rate is reduced and the operating voltage, continuous current capacity and breaking capacity are decreased. Moreover the durability of the insulation is also decreased owing to the atmospheric pressure. Contact us for further detail.

B. Service condition

1. Normal/Special service condition

Table A. The compensation of rated current according to ambient temperature

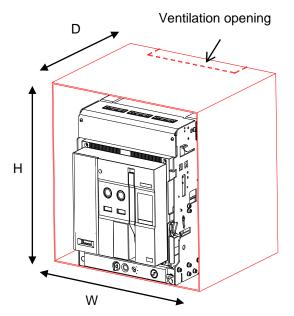
Product model	Rated current	Applicable busbar size (mm)		Horizontal type			Vertical type					
			40°C	45℃	50°C	55°C	60°C	40°C	45℃	50°C	55℃	60°C
	800 A	6.35T x 76.2 x 1ea (Inch : 1/4 x 3 x 1ea) 5T x 100 x 1ea 6T x 80 x 1ea	800 A	800 A	800 A	800 A	800 A	800 A	800 A	800 A	800 A	800 A
	1,600 A	6.35T x 76.2 x 2ea (Inch : 1/4 x 3 x 2ea) 10T x 100 x 1ea 6T x 80 x 2ea	1,600 A	1,600 A	1,600 A	1,600 A	1,600 A	1,600 A	1,600 A	1,600 A	1,600 A	1,600 A
UDA - 25E	2,000 A	6.35T x 101.6 x 2ea (Inch : 1/4 x 4 x 2ea) 5T x 125 x 2ea	-	-	-	-	-	2,000 A				
		8T x 80 x 2ea	2,000 A	2,000 A	2,000 A	2,000 A	2,000 A					
		6.35T x 127 x 2ea (Inch : 1/4 x 5 x 2ea)	-	-	-	-	-				2,500 A	2,500 A
	2,500 A	8T x 100 x 2ea 5T x 100 x 3ea 10T x 80 x 2ea	2,500 A	2,500 A	2,500 A	2,400 A	2,300 A	2,500 A	2,500 A	2,500 A		
		6.35T x 127 x 3ea (Inch : 1/4 x 5 x 3ea)	-	-	-	-	-					
UDA - 32E	3,200 A	10T x 125 x 2ea	-	-	-	-	-	3,200 A	3,200 A	3,200 A	3,120 A	3,050 A
		10T x 80 x 3ea 8T x 100 x 3ea	3,200 A	3,200 A	3,100 A	3,000 A	2,900 A			.,		
UDA - 40E	4,000 A	6.35T x 127 x 4ea (Inch : 1/4 x 5 x 4ea)	-	-	-	-	-	4,000 A	4,000 A	4,000 A	3,950 A	3,800 A
	.,	10T x 125 x 3ea	-	-	-	-	-				.,	

Table B. Power dissipation

		Rated	Fixed	Туре	Draw-out Type		
Туре	Pole	Current (A)	Resistance (mΩ)	Power Dissipation (W)	Resistance (mΩ)	Power Dissipation (W)	
		800	0.031	20	0.061	39	
UDA-25E		1,600	0.031	79	0.061	156	
UDA-25E	3P	2,000	0.031	124	0.061	244	
		2,500	0.031	194	0.061	381	
UDA-32E		3,200	0.028	287	0.046	471	
UDA-40E		4,000	0.025	400	0.040	640	
		800	0.042	27	0.082	52	
UDA-25E		1,600	0.042	108	0.082	210	
UDA-25E	4P	2,000	0.042	168	0.082	328	
	412	2,500	0.042	263	0.082	513	
UDA-32E		3,200	0.038	389	0.062	635	
UDA-40E	<i>.</i> .	4,000	0.034	544	0.054	864	

Note) 1.Power dissipation is the value measured at each rated current for 3pole or 4pole breaker. 2. Resistance is the value measured across the terminals of connecting all poles in series.

B. Service condition


2. Altitude, and enclosure information

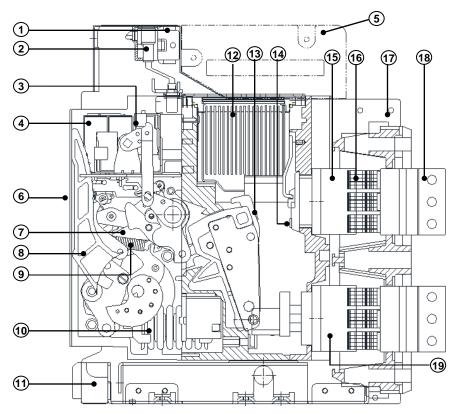
Altitude

DC products are designed for operation at altitudes under 2000m. At altitudes higher than 2000m, change the ratings upon a service condition.

Altitude [m] Item	2000	3000	4000	5000
Poted voltage	1500 V dc	1350 V dc	1200 V dc	1050 V dc
Rated voltage	1000 V dc	900 V dc	800 V dc	700 V dc
Current compensation constant	1 x ln	0.98 x In	0.96 x In	0.94 x In

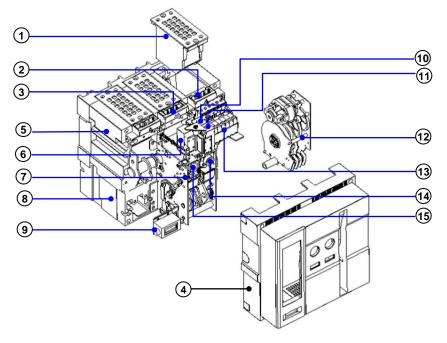
Enclosure Information

Model	Frame Rating		Enclosure Dimensions mm (in.)			Ventilation opening mm (in.)		
			Н	W	D	Тор	Bottom	
UDA-25E	2500AF 3200AF 4000AF	3	500 (19.69)	500 (19.69)	340 (13.39)	55 X 350	55 X 350	
UDA-32E UDA-40E		4	500 (19.69)	615 (24.21)	340 (13.39)	(2.17 X 13.78)	(2.17 X 13.78)	


Note 1) It is minimum Enclosure Information

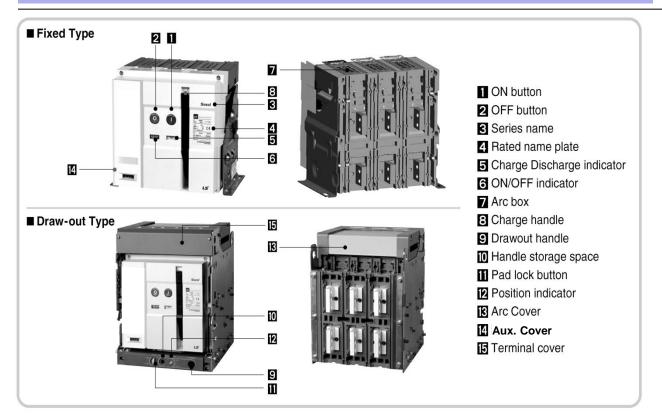
2) Ventilation Opening for 4000 AF only

C. Structure and operation

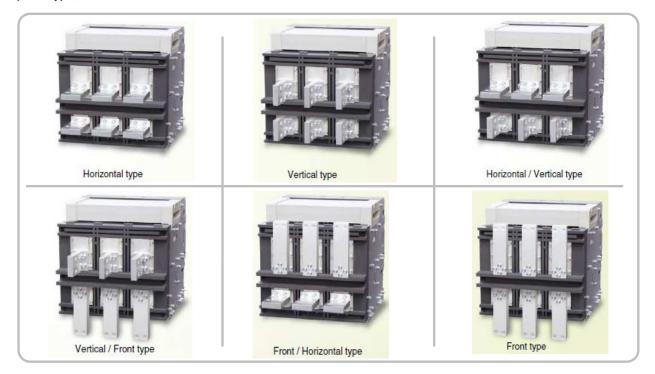

1. Internal structure and components

Internal configuration

1 Control terminal block
 Control terminal
3 Auxiliary switches
4 Closing, Trip, UVT Coil
5 Arc cover
6 Front cover
⑦ Mechanism
8 Charge Handle
 Trip spring
(10) Closing spring
1) Draw-in/out device
(12) Arc chute (DC)
(13) Moving contact
(14) Fixed contact
(15) Conductor on line side
(16) Finger of cradle
(17) Cradle
(18) Adaptor of circuit breaker
(19) Conductor on load side


Components

- (1) Arc chute (DC)
- 2 Aux. switch control terminal
- 3 Control power supply terminal
- 4 Cover
- 5 Carrying grip
- 6 Trip coil
- 7 Mechanism
- 8 Main body
- 9 Counter
- 10 UVT coil
- (1) Closing Coil
- (12) Motor Ass'y
- 13 Aux. switch
- (14) ON button
- 15 OFF button


C. Structure and operation

1. Internal structure and components

Terminal Configuration

There are many possible terminal configurations when connecting bus bar of distribution panel, vertical, horizontal plane type, etc.

C. Structure and operation

2. Basic function and breaking operation

ACB prevents a fire, a property damage, the breakage of an electrical equipment on load side by protecting a circuit from the fault currents.

1. Circuit Closing

The closing operation of mechanism applies the current to the load. When energized, some loads makes inrush current much greater than rated current (In) (e.g. Motor takes in 7~8times of In for a few seconds). To prevent these over current which causes the dangerous phenomena for contacts (Erosion by arcs), closing operation should be prompt. If a circuit breaker is in accordance with all standard cases, it should be able to endure 15~20 times of the rated current.

2. Current Conducting

A circuit breaker must not be exceeding an acceptable temperature rise under normal current conducting and there must be safe current conducting within specified breaking time under over current. Furthermore, it must have the structure which can withstand the high electrodynamics to accept the short-circuit current while a circuit breaker or fuse in downstream is operating to break it.

3. Circuit Opening, Current Breaking

Current can be broken manually or remotely by voluntary operation on mechanism.

4. Isolation

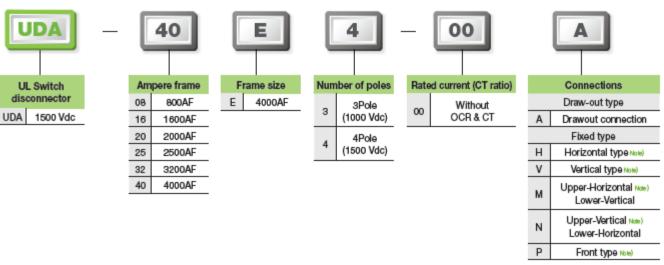
When a circuit breaker is open, a certain isolation level is required between charging and non-charging parts. The Isolation Level is decided by following tests.

1) Dielectric voltage-withstand test under 1000V plus the maximum voltage

2) The impulse withstand test (Level : 12kV)

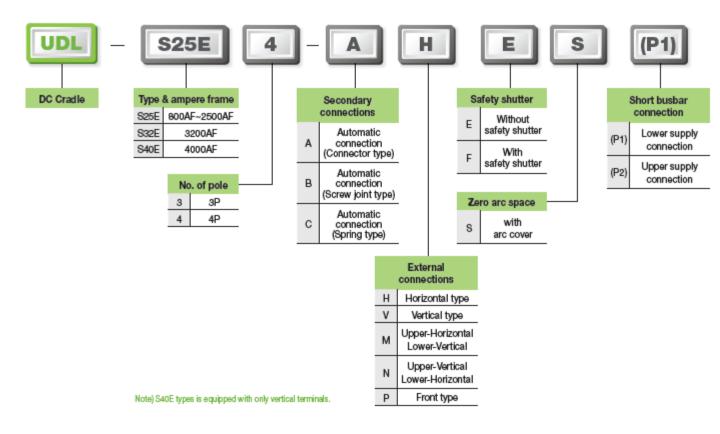
D. Ratings and types

1. Ratings


	Brand			
Rated nominal v	Vdc			
Rated maximum	Vdc			
Poles		(P)		
Version				
Standard				
	Туре			
Ampere frame		(AF)		
Short circuit with	stand current	(kA)		
Operating time (r		Max. openning	time	
Operating time (r	nsj	Max. closing time		
Lift quals (times)		Mechanical		
Lift cycle (times)		Electrical		
		Main body	ЗP	
		with cradle	4P	
Weight Ib (kg)	Draw-out type	Only gradie	ЗP	
		Only cradle	4P	
	Fixed type	Motor	ЗP	
	Fixed type	charging type	4P	
	Deeve and there a	H×W×D	ЗP	
External dimensions	Draw-out type	H×W×D	4P	
Inches (mm)	Fixed to me	LL MAR	ЗP	
	Fixed type	H×W×D	4P	
Enclosure dimen	sions	H×W×D	ЗP	
Inches (mm)	HXWXD	4P		

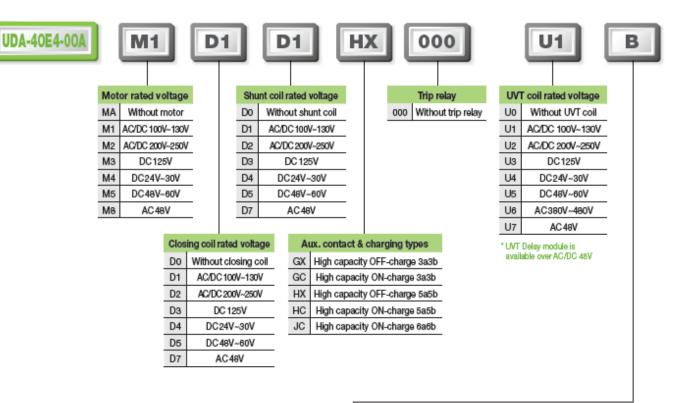
Susol										
DC 1250 V (4P) / DC 800 V (3P)										
DC 1500 V (4P) / DC 1000 V (3P)										
	4P / 3P									
		Fixed / D)raw-out							
		UL 489B,	UL 489F							
UDA-08E	UDA-16E	UDA-20E	UDA-25E	UDA-32E	UDA-40E					
800	1600	2000	2500	3200	4000					
		10	00							
		4	0							
		8	0							
		12,	500							
10,	000	8,000	5,000	3,000	2,000					
	214	(97)		245 (111)	326 (148)					
	269	122)		309 (140)	414 (188)					
	99(45)		123 (56)	205 (93)					
	121	(55)		152 (69)	256 (116)					
	101	(46)		110 (50)	196 (89)					
	126	(57)		137 (62)	249 (113)					
	16.	93×16.22×16.0	02 (430×412×4	07)						
	16.	93×20.75×16.0	02 (430×527×4	07)						
	11.	81×14.88×11.€	61 (300×378×2	95)						
	11.	81×19.41×11.6	61 (300×493×2	95)						
	19.	69×19.69×13.3	39 (500×500×3	40)						
	19.	69×24.21×13.3	39 (500×615×3	40)						

D. Ratings and types


2. Type of UDA series

Main frame

Note) 4000AF only provide with vertical type


Cradle

D. Ratings and types

2. Type of UDA series

Accessories

Option table										
Character		Option name	Character		Option na	ime				
S	CS2	Charge switch communication	H1		AC/DC 100-125V					
В	В	On/Off button lock	H2		AC/DC 200-250V					
М	М	Mechanical interlock	Hз	I	DC 125V	Capacandan				
D	Dior	Door interlock or MOC	H4	SHT2	DC 24-30V	Sencondary shunt coil				
U	MOC	MOC (Mechanism operated cell switch)	H5		DC48-60V	Shuhi coli				
К	K1	Key lock	H6	[AC 360-460V					
K2	K2	Key interlock set	H7		AC 46V					
Кз	Кз	Key lock double								
R	RCS	Ready to close switch	Ι							
Т	TM	Temperature monitoring	Ι							

E. Weight & dimension

1. Weight

Unit : lb(kg)

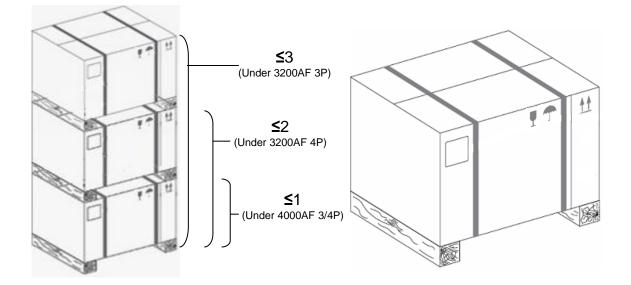
-							
	250	DOAF	320	0AF	4000AF		
Туре	800~2500A		3200A		4000A		
	3P	4P	3P	4P	3P	4P	
Fixed	101(46)	126(57)	110 (50)	137 (62)	196 (89)	249 (113)	
Draw-out (with cradle)	214 (97)	269 (122)	245 (111)	309 (140)	326 (148)	414 (188)	
Cradle	99 (45)	121 (55)	123 (56)	152 (69)	205 (93)	256 (116)	

2. Specification of common busbar

Туре	AF	Ordering number	3D configuration	Configuration
	2500AF	70223467601 3P : 1 ea 4P : 2 ea		Short busbar: 75mm×10T×2ea Bolt: M12×50×4 ea Nut: M12, 4 ea Spring washer, Plain washer
UDA series	3200AF	70223467602 3P : 1 ea 4P : 2 ea		Short busbar: 75mm×10T×2ea Bolt: M12×50×8 ea Nut: M12, 4 ea Spring washer, Plain washer
	4000AF	70223467603 3P : 1 ea 4P : 2 ea		Short busbar: 125mm×10T×3ea Spacer busbar: 125mm×10T×2ea Bolt: M12×50×8 ea Nut: M12, 4 ea Spring washer, Plain washer

F. Unpacking

1. Receiving


Receiving

A visual inspection – inside and out – should be performed immediately upon receipt of the ACB and before removing it from the truck. Shipping papers should be checked to ensure all boxes or other accompanying pieces have been received. If any damage or shortages are evident, a claim should be filed at once with the carrier, and the nearest LSIS sales office. Claims for shortages or other errors must be made in writing to LSIS within 30 days after receipt of ACB. Failure to do so constitutes unqualified acceptance and a waiver of all such claims by the purchaser.

2. Unpacking

Unpacking

- 1.Before unpacking the breaker, check that all boxes and packing are in good condition.
- 2. While unpacking, check the breaker is in good condition.
- 3. Check that the information given on the rating /accessory nameplates corresponds to the purchase order.
- 4.Care about the unpacking to avoid damaging the products. Unpacking them attentively to avoid dropping the products from carrying components and pallets.
- 5.Install the products to the final installation place after unpacking as soon as possible. If you cannot install the products immediately, you had better not unpacking them. Keep the products indoor around 15°C and under 50% of humidity. Standard packing condition for domestic portage is not suited to outdoor storage. If you cannot keep the maintenance above, you should inspect a degree of the damages before you install the products. Unsuitable keeping does not guarantee good qualities of the products and could occur additional danger of an accident.

F. Unpacking

3. Check point and caution

Please read the following check points and caution carefully as they imply the critical contents which should be confirmed before performing the unpacking, inspection, or installation, etc.

Check points upon receiving

- 1. A visual inspection inside and out should be performed immediately upon receipt of the ACB and before removing it from the truck. If any damage or shortages are evident, a claim should be filed at once with the carrier to the nearest LSIS sales office.
- 2. Unpacking them attentively to avoid dropping the products from carrying components and pallets.
- 3. Install the products to the final installation place after unpacking as soon as possible. If you cannot install the products immediately, you had better not unpacking them. Keep the products indoor around 15 °C and under 50% of humidity. Standard packing condition for domestic portage is not suited to outdoor storage. If you cannot keep the maintenance above, you should inspect a degree of the damages before you install the products. Unsuitable keeping does not guarantee good qualities of the products and could occur additional danger of an accident.

Caution for installation inspection

- 1. Confirm all power sources are completely de-energized first.
- 2. Disconnect all electrical switches which may operate during inspection.
- 3. Disconnect all plugs connected to operating part of product (Shunt coil, OCR, etc.)
- 4. In case of Draw-out type, pull out the product until guideline comes to TESTED position from cradle. (Basic inspection is available under TEST position.)
- 5. In case of detailed inspection, remove the product form cradle securely and put it to the even stand.
- 6. Inspect product.

Unpacking for draw-out type

- 1. Keep pushing the off button, insert a draw-out handle to the body of the circuit breaker. At this time, the draw-out position indicator shows CONNECTED position.
- 2. Check the draw-out handle properly inserted and then push the pad lock button and turn the draw-out handle counterclockwise. The breaker reaches the TEST position.
- 3. Push the pad lock button and turn the draw-out handle again counterclockwise until the pad lock button projects. At this time, the draw-out operation is finished with indicator which shows DISCONNECTED position.
- 4. Keep pushing the lever draw button, pull the extension rails of cradle forward and lift up the breaker from cradle securely by using lifting device and put it on flat place.
- 5. Separate the cradle from pallet by releasing all bolts tightened on pallet to fix the cradle.

G. Handling and storage

1. Handling

1. This breaker and cradle are designed to move easily by overhead lifting devices such as hoisters. You can use lifting hooks which is optional to move them without difficulty. All the carrying devices should be suited to the product's permissible weight which is presented in Table.1. In case of using forklift, refer to figure.1.

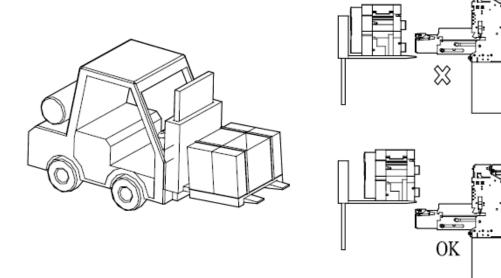


Fig 1. Lifting by forklift

2. When lifting products with forklift, be careful with the bottom plane not to exceed the rear side of products. (Refer to fig.1)

Precaution of handling

- 1.To lift the breaker (Fixed type), use the lifting hooks on the sides of the breaker, and lift with rope or something similar.
- 2. When placing the breaker on the ground, be careful not to drop or to impact the breaker.
- 3. When the draw-out breaker is lifted with the cradle, lift it in the connected position.
- 4. Never slide the breaker when handling.

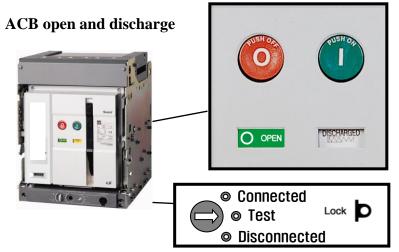
Fig. 2. Handling method of Fixed type

Fig. 3. Handling method of Draw-out type

G. Handling and storage

2. Storage

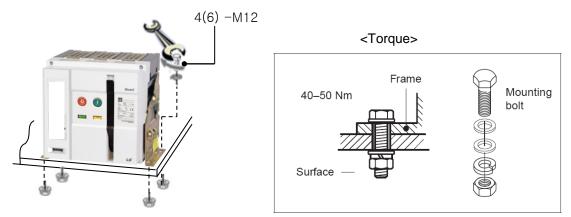
Precaution of storage


When storing a circuit breaker for a long term,

- 1. Keep the breaker at OFF position with the charging spring discharged.
- 2. Store the draw-out type breaker on the plat place after the TEST position inserted.

Storage method

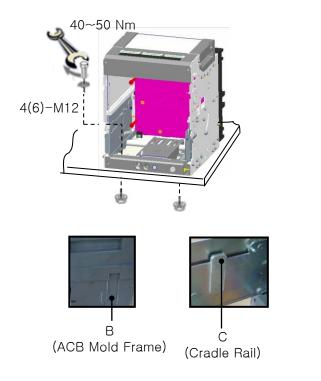
- 1. Store the breaker in a dust free and dry environment.
- 2. Keep the breaker in OFF position with the charging spring discharged.
- 3. Cover the breaker with a vinyl sheet or a similar cover. When putting the breaker into service after long term storage, it is unnecessary to lubricate the parts of the breakers.
- 4. Keep the breaker indoor as it was packaged around $15\,^\circ\!\!\mathbb{C}$ and under 50% of humidity.
- 5. Standard packing condition for domestic portage is not suited to outdoor storage. If you cannot keep the maintenance above, you should inspect a degree of the damages before you install the products.
- 6. Unsuitable keeping does not guarantee good qualities of the products and could occur additional danger of an accident.

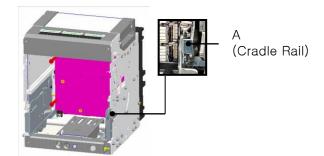


1. Installation of fixed type

Installation of fixed type

Securely install the left and right mounting frames with M12 bolts (4EA).




2. Installation of draw-out type

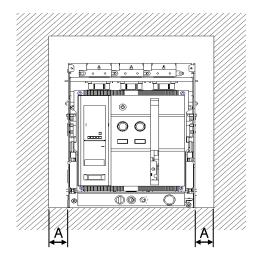
Installation of draw-out type

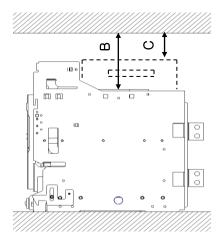
Install draw-out type according to the instruction given below.

- 1. Securely install the cradle at the bottom with M12 bolts (4EA).
- 2. Pull the extension rails of cradle forward.
- 3. Put the breaker on the rail as shown in picture by using lifting device.
- 4. Please check if the circuit breaker fits well to the cradle.
- 5. Slowly push the circuit breaker by moving the rail handle.

3. Installation precaution

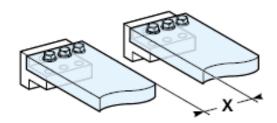
General Precaution


- 1. Do not lay down a breaker on the side or stand with the side of it.
- 2. Install a circuit breaker on perfect even ground. (Within 2mm of the level difference)
- 3. Do not install a circuit breaker with same direction of a rail when you use an angle.
- 4. Install a circuit breaker at a right angle to the direction of a rail to decentralize weight of the circuit breaker.



Insulation clearance

You should keep the isolation distance between the product and panel based on the table as below.


Uni	t٠	m	m

Туре	А	В	С
Fixed	50	150	N/A
Drawout	50	N/A	0

3. Installation precaution

Minimum spacing

The dimension of all charging parts should be over the minimum spacing.

	Minimum spacing at terminals (through air)			
Voltage between parts	Between terminals of opposite polarity (X)	Between terminals and any grounded metal		
131 ~ 300 V	19.1 mm	12.7 mm		
301 ~ 1000 V (or 1500 V dc)	25.4 mm	12.7mm		

4. Installation of insulation barrier

Installation of insulation barrier

- 1. Insert insulating barriers between the phases after installing a circuit breaker for the safety. (option)
 - The part that can not be assembled due to interference with the short busbars,
 - Cut the part with scissors as shown in Fig.1 and assemble.
- 2. In case of draw-out type, direction of insertion is "C".
- 3. In case of fixed type, direction of insertion is "A".

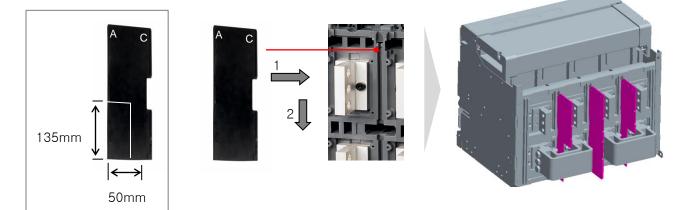
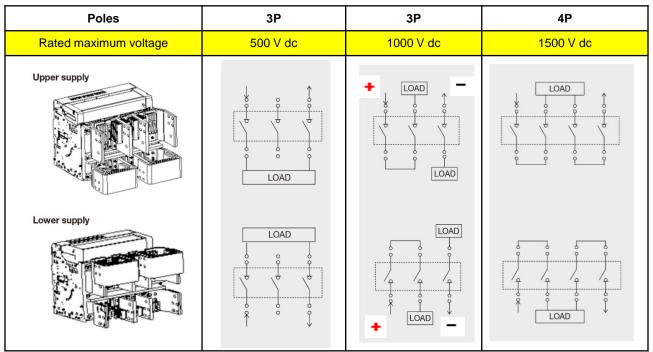



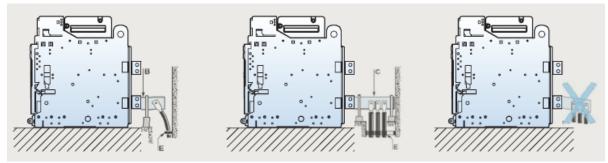
Fig.1

5. Busbar connection

Operation voltage and Connection diagram of UDA Series

Note) If you set up connections not involved in the instruction above, ask the LSIS technical team.

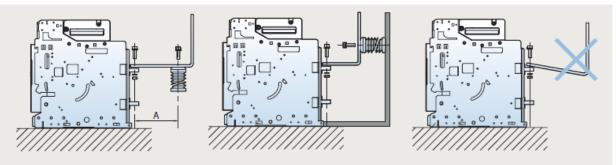
Composition of short busbars


- 1. Short busbars can be ordered as shown in the table below, or customers have to make short busbars in accordance with the specified busbars in section 2.
- 2. Short busbars are configured as below according to the rated operational current.
 - 3200A below : Width 75mm x 10T x 2ea
 - 4000A : Width 125mm x 10T x 3ea
- 3. The tightening torque for assembling short busbars is 40 ~ 50N.m

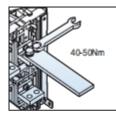
	Rated current	Ordering code	Ordering Quantity
	800~2500A	70223467601	3P : 1ea 4P : 2ea
	3200A	70223467602	3P : 1ea 4P : 2ea
Short busbar	4000A	70223467603	3P : 1ea 4P : 2ea

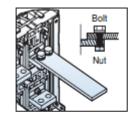
6. Caution of busbar connection

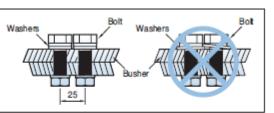
Cable connections


Make sure that no excessive mechanical force put on the rear terminals for cable connection. Extension terminals is fixed such as B,C and cable is to fixed to the frame such as E .

Busbar connections


For busbar connections, connect access parts with a provided torque and fix with parallel installing the support not to apply terminal weight to circuit breaker.


In order to prevent the spread safety or secondary accidents, sevure maximum safe distance A (Table 1) from the access area to withstand the electrical force during the short circuit faults.

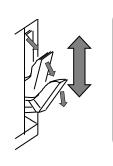


					(Table 1) Ma	ximum safe distance A
Short capacity (kA)	30	50	65	80	100	150
Length A (mm)	350	300	250	150	150	150

Tightening torque of assembling busbars

Comutano	Tightening torque				
Screw type	Standard(kgf·cm)	Tolerance	Standard(N.m)	Tolerance	
M8	135	±16	13.3	±1.6	
M10	270	±32	26.5	±3.2	
M12	480	±57	46.6	±5.6	

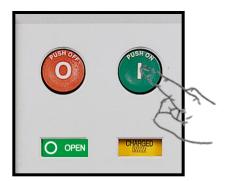
Note) Warranty can not be applied to product damage by arbitrary alterations.


1. Manual operation

Caution : Before opening or closing the breaker equipped with an under voltage tripping device, control voltage should be applied.

Manual charging

- 1. Charge the handle 7~ 8 times with full strokes.
- 2. When the closing spring is completely charged, the charging indicator shows "CHARGED".



Manual closing

- 1. Push ON button.
- 2. The breaker will be closed.
- 3. The CLOSED/OPEN indicator shows "CLOSED" and the charging indicator shows "DISCHARGED".

Manual tripping

- 1. Push the OFF button and breaker will be tripped.
- 2. The CLOSED/OPEN indicator shows "OPEN".

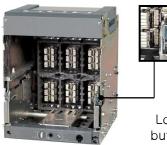
ACB off and charged

2. Electrical operation

Electrical operation

Closing operation is done by charging the closing spring from remote control. If pushing trip button, closing spring is automatically charged by a geared motor and a circuit breaker is closed by closing button.

Electrical closing

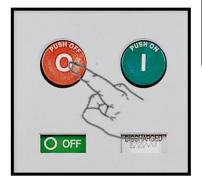

1. Remote closing can be made by energizing the closing coil (CC). Apply the rated voltage to the control terminals A1 and A2 and close the breaker.

Electrical trip

- 1. Remote opening can be made by energizing the shunt trip device or under voltage trip device.
- 2. In the case of SHT, apply the rated voltage to the terminal C1 and C2.
- 3. In the case of UVT, remote opening is also possible by applying a short circuit across terminals D1 and D2 of the UVT controller.

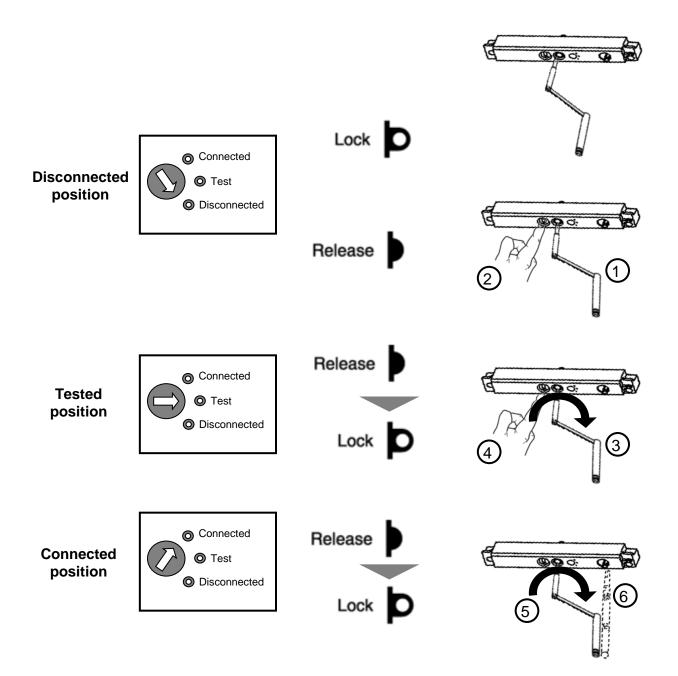
3. Draw-in operation

Draw-in operation procedure


1. Pull the extension rails of cradle forward

2. Put the breaker on the rail by using lifting device. Please check if the circuit breaker fits well to the cradle.

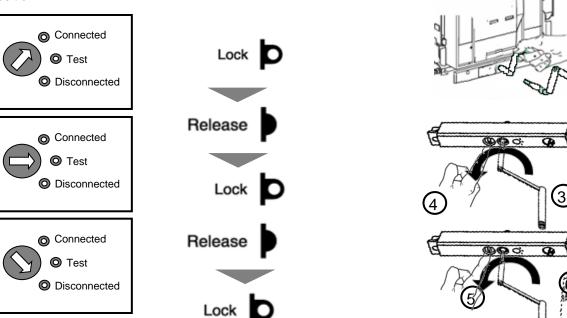
3. Slowly push the circuit breaker by moving the rail handle until it stops.


I Caution

- 1. Operating handle of cradle only can be inserted when pushing OFF button.
- 2. If locking device for draw in/out protrudes, stop handle operation and move to next procedure as it indicates the complete operation of ongoing process.
- 4. Keep pushing the OFF button when the circuit breaker in a trip condition, and insert a handle to the body of the circuit breaker.

3. Draw-in operation

- 5. Check the draw-out handle properly inserted and then push the lock plate and turn the draw-out handle clockwise in order to insert the breaker.
- 6. When the breaker reaches the TEST position, the lock plate automatically projects and the draw-out handle is locked.
- 7. Push in the lock plate and turn the draw-out handle again clockwise until the lock plate projects, the inserting operation is finished. At this time, the draw-out position indicator shows CONNECTED position.



4. Draw-out operation

- Caution
 - 1. Please stop handle operation when draw in/out locking device protrudes.
 - 2. Draw in or out by moving handle right or left side when draw in/out locking device can not be inserted.

Draw-out operation procedure

- 1. Keep pushing the OFF button when the circuit breaker in a trip condition, and insert a handle to the body of the circuit breaker.
- 2. Check the draw-out handle properly inserted and then push the lock plate and turn the draw-out handle counterclockwise in order to insert the breaker.
- 3. When the breaker reaches the TEST position, the lock plate automatically projects and the draw-out handle is locked.
- Push in the lock plate and turn the draw-out handle again counterclockwise until the lock plate projects, At this time, the draw-out operation is finished with indicator which shows DISCONNECTED position.

- 5. The circuit breaker indicated with 'DISCONNECTED' can be separated safely from the cradle by removing a draw in/out handle and releasing right and left locks.
- 6. Use a lifting hook to separate a circuit breaker from a cradle.

O OFF

1. Inspection and maintenance cycle

The purpose of inspection for ACB is to prevent the accidents in advance and maintain the performance of it by changing timely the consumable and deteriorative parts. Please make sure the following guideline specified the method for inspection & cycles before using of the equipment.

Maintenance cycle upon using condition

Using condition	Environments	Specific examples	Inspection cycle	Replace ment cycle
	Location with clean & dry air	Electrical rooms with dust proof & air-conditioner	Once every 2 years	
General environment for a use	Indoor location with little dust Location without corrosive gases	Distribution panel or individual electrical room without dust proof & air conditioner	when operating after installation under the usage environmen t over 70 times	Within approx. 10 years
Special environment for a use	Location with salinity, high temperature gases such as sulphur dioxide and hydrogen sulphide	Geothermal power plants, waste water treatment plants, steel mills, paper factories, pulp factories, etc.	Once every 1 year when operating after installation under the usage environmen t over 70 times	Within approx. 7 years
	Locations with harmful or corrosive gases where humans cannot stay for a long time	Chemical factories, quarries, mining areas, etc.	Once every half a year	Within approx. 5 years

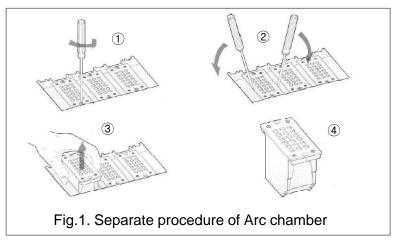
* Add grease to every operational part at every maintenance cycle

2. Guarantee life cycle

1. Life cycle of products

AF	Life Cycle		Guarantee Life Cycle **		Number of operation
AF	Mechanical	Electrical *	Mechanical	Electrical	(Between Servicing) ***
~1600AF		10,000			
2000AF		8,000			
2500AF	12,500	5,000	1,000	400	1,000 Cycle (every 2 years)
3200AF		3,000			
4000AF		2,000			

note) * . Electrical life cycle is based on time constant 3ms. **. Guarantee Life Cycle is according to UL489F & UL489B.


***. Servicing shall consist of cleaning, lubricating, tightening, etc

2. Service Life of Parts

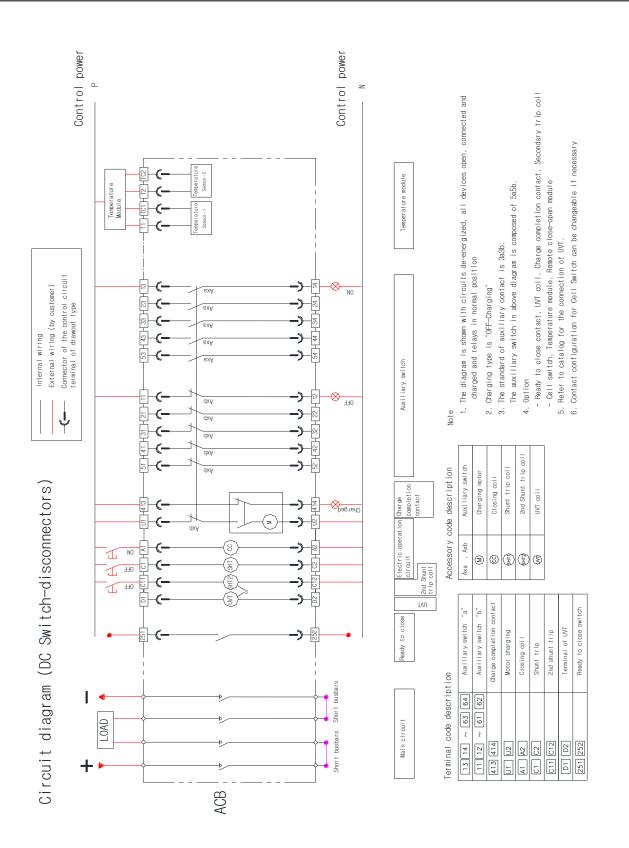
Part	Life Cycle	
Arc chute	Electrical life cycle	
Main contact		
Electrical parts (Closing / Shunt coil)	Mechanical life cycle	
Charging motor		


3. Inspection method of Arc chamber

- 1. Remove the mounting screws of the arc chamber.
- 2. Separate the arc chamber by lifting it up using two screw drivers as shown in fig.1 below.
- 3. Check the condition of the disassembled arc chamber.
- Check if there is any damage on grid assembly of arc chamber or parts and replace them if necessary.

4. Inspection method of main contact

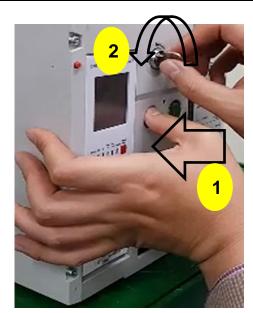
- 1. The degree of damage of contact can be checked upon following inspection method periodically.
- 2. Separate arc-chamber.
- 3. Close the circuit breaker and compare the condition of the moving contact with the below Fig. 2.


5. Defects and troubleshooting guideline

Troubleshooting guideline

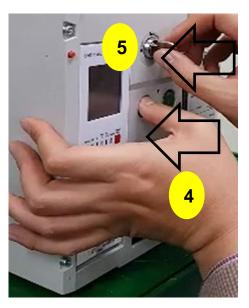
Types of Detect	Cause	Countermeasure	
The breaker is opened unintended.	Voltage does not exist or UVT is damaged	Check voltage Replace damages UVT	
The baseline is second simultaneously.	Short circuit	Check condition of breaker before re-closing	
The breaker is opened simultaneously with the closing operation	Damage on the mechanism	Contact LSIS service center	
Open operation cannot done automatically	Voltage supply from the trip device is too low. V<0.7Vn	Check voltage supply. (0.7~1.1Vn)	
Open operation does not work manually	Damage on the mechanism	Contact LSIS service center	
	Deposition of main circuit	Contact LSIS service center	
	Closing operation at state of short circuit	Check condition on breaker	
	Unstable draw-in/out	Check draw-in/out stage of product	
	Anti-pumping function	Re-operate after removing power of the closing coil	
	Spring charge of breaker is not worked	Check power supply of the charging motor. Check if manual charging works. Contact LSIS service center or replace charging motor if necessary.	
Breaker does not close neither manually nor remotely	Power supply problem of the closing coil	Remove power supply of the closing coil . Apply power again after checking the breaker's closing availability. Contact LSIS service center if manual charging is unavailable.	
	Power supply problem of the trip coil	Remove power supply of the trip coil	
	Insufficient power supply of the UVT or defect	Apply voltage (V>0.85Vn) to the auxiliary switch and try closing operation by closing coil	
	Locked state of the breaker under open position	Check if the closing error state is normal	
	In case breaker is interlocked	Release interlock	
Close manually but does not close from	Inappropriate voltage supply of the closing coil	Check voltage supply of the closing coil (0.85~1.1Vn)	
remote.	Defect of the closing coil is open circuit	Replace closing coil	
		Check voltage supply	
Motor charging malfunction	Check condition on breaker	Check the circuit of charging motor	
		Try reset operation and if there is a problem or defect Please contact LSIS service center for replacement	
Crank handle for draw-in/out cannot be inserted	No opening of the crank insertion by pressing Open button	Insert while pressing Open button	
	Under padlock or interlock	Remove padlock or interlock	
	Not putting the product into the cradle securely	Rush product into cradle securely	
	Crank handle is inserted	Remove crank handle	
Breaker cannot be moved to the removable positon	Breaker is not in Disconnected position	Draw out to the Disconnected position completely	
entovable positori	Under padlock or interlock	Remove padlock or interlock	
Breaker cannot be drawn in	The cradle and mainframe of the breaker do not fit	Check if cradle fits with mainframe	
completely. (It is not in the	Inappropriate position of the cluster	Move cluster to the right position	

K. Wiring diagram


1. Wiring diagram


L. Other operation

1. KEYLOCK operation


Keylock is used to prevent unintentional closing operation of the ACB by user. When the ACB is in the operation state, the ACB can operate the On/Off operation with plugged the key. If the ACB is locked, the key is unplugged and the closing operation is not possible.

 Turn the key CCW with keeping after pushing the off button

When the key is rotated to lock position, remove the key with pulling it

Push the off button and Insert the key

Turn the key slightly to the lock position and Turn to the opposite direction.

Super Solution

Leader in Electrics & Automation

LSIS Co., Ltd.

 HEAD OFFICE 127, LS-ro, 14119, KOREA http://org.1sis.nom

- CHEONG-JU PLANT Cheorig Ju Plant #1, Song Jung Dong, Hung Duk Ku, Cheorig Ju, 361-720, Korea
- Global Network
- LSI6 (Middle East) FZE>>Dubdi, U.A.E. Addream LOB 19 JAFZAVIEW TOWER Room 205. Jebel All Freezona P.O. Box 114215, Dubai, United Arabi Emirates Tel. 971-4-686-5360 Fax 871-4-686-5361 e-mail. jung/origi@iais.biz.
- Dallan LSIS Co., Ltd.>>Dallan, China Address: No. 15, Ltighen: 3-Roed, Economic and Technical Development zone, Dallan 116500, China Tet 86-411-8273-1777 Fax: 85-411-6730-7560 e-mail: Not@lsis.com.cn
- LSIS (Wuxi) Co., Ltd. >> Wuxi, China Address: 102-A, National High & New Tech Industral De velopment Area, Wuxi, Jiangsa, 214028. P.R. China Tel: 85-510-8534-0666 Fax: 85-510-522-4078 e-mail: xubg@tess.com.cn.
- LSIS-VINA Co., Ltd. >>Hanoi, Vietnam Addres: Naryen Koe-Doro Arn - He Nor - Viet Nam Set 84 4 482 0732 Par 1814-402 0220 - mail erjo@bievioo.biz

- LSIS-VINA Co., Ltd. >> Hochiminh, Vietnam Address, 41 Aguves Thi Minih Khai-Sir, Yace Bidd ath Floor, Macromotic City, Vietnam Sin: 64-0.3022; 2041 Fisik, 54-5-3822; 78:42 si-mat, sitgark @tstavina.tht
- LSIS Shanghai Office >> Shanghai, China Addees: Room E-B, 12th (Nort-Hearie Employ Plaza: No 725) West Yorten Road Sharghai 20060, P.R. China Tet, 86-21-5257-9977 (608) Fox 89-21-5257-7191 #-mail Jerhel@iele.com/china
- LSIS Beijing Office >> Beijing, China Admas B Tower 17FL Being Global Trade Center BrD. No 35 BeidenHum/Being Lu, DargCheng-Dottes, Being 100013, PR China Tel 85-10-5525-6027 Fran 86-10-5125-6008 e-email oblighter org/gins.com.ch
- LSIS Guangzhou Office >> Guangzhou, China Adtress, Rozen 1403-145 New Poly Tower 2 Zhongetan Liu Road, Guangzhou, PR Choise
 Color, PR Choise Sci 20-8335-8187 nemet longghes col
- LSIS Cheonodu Office >> Cheonodu, China Address Rore: 1701 17Fbee: huamichan) xvinterunions/Building, het Pusag Roat Cheonodu, 610041, P.R. Chine Tel: 86-26-8670-3101 Par: 66-28-8070-3201 e-mail ysinpct@sex.com.cn
- LSIS Qingdao Office >> Qingdao, China Address: 7840 Nexe Descripting Sharve Building D. No.0. Sharvong Rost Despited 29400 - PRI: China Ter Mr. 502 (551-4555 Fax 16-532 581-3793 e-mail: Indiana app. cr.
- LSIS NETHERLANDS Co. Ltd >> Netherlands Address: 1st Floor, Tuppentaer 46, 111092, Grinkhol-Bie, The Netherlands Tel: 21-20-054-1420; Fex: 51-20-054-1429 e-mail: another policies file:
- LSIS Gurgaon Office >> Gurgaon, India Advess: 1981 est Frior Park Central, Sector 30, Gurgaon, 122002, Naryana, India

Customer Center - Quick Responsive Service, Excellent technical support TEL. 82-1644-5481 | Home page. http://www.isis.com

Specifications in this instruction menual are subject to change without notice due to continuous products development and improvement.

79563466801 Instruction Manual for UDA series of DC MCS 2017 (9001) JUNG ANG